oneA

Pl VIRTUAL WORKSI

Praveen Kundurthy

What is oneAPI and Data Parallel C++7?

intel.

Introduction to oneAPI

a) Introduction & Overview to oneAPI
b) Introduction to the Intel® DevCloud

c) Introduction to Jupyter notebooks used for training
Introduction to Data Parallel C++

)
e) DPC++ Program Structure

e Hands On

e Introduction to DPC++ - Simple

 Complex multiplication

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

intel.

2

Learning Objectives

Explain how oneAPI can solve the challenges of programming in a
heterogeneous world

Use oneAPI solutions to enable your workflows
Experiment with oneAPI tools and libraries on the Intel® DevCloud

Understand the Data Parallel C++ (DPC++) language and
programming model

Use to

Build a sample DPC++ application through hands-on lab exercises

intel.

3

Cross-Architecture Programming for Accelerated Compute, Freedom of Choice for Hardware
oneAPI: |
Industry Initiative & Intel Products /ipcy)

\<O1 gmﬁj
One Intel Software & Architecture group

Intel Architecture, Graphics & Software Top 5 New Prod.ucts
November 2020 or Technologies
to Watch
Intel OneAPI

Awards Winner for 15 Years
A A A A A A A A A A A AN

intel.

All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Programming Challenges

for Multiple Architectures

Application Workloads Need Diverse Hardware

[[[[[
[o [
[o [
[o [
O0oo0od

Scalar Vector Spatial Matrix

Growth in specialized workloads
Middleware & Frameworks

Variety of data-centric hardware required

Separate programming models and toolchains for each — - . Other accel.
architecture are required today Programming | programming | programrming | programming

Software development complexity limits freedom of
architectural choice

Other accel.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. ir\tel0
*Other names and brands may be claimed as the property of others. \

Introducing

oneAP|

Cross-architecture programming that delivers freedom
to choose the best hardware

Based on industry standards and open specifications

Exposes cutting-edge performance features of latest
hardware

Compatible with existing high-performance languages
and programming models including C++, OpenMP,
Fortran, and MPI

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Application Workloads Need Diverse Hardware

A m e &8

Scalar Vector Spatial Matrix

Middleware & Frameworks

.
Industry - Intel
>

Initiative Product

on'eA'PI

Other accel.

intel.

6

oneAPI Industry Initiative

Break the Chains of Proprietary Lock-in

A cross-architecture language based on C++ and SYCL standards

Powerful libraries designed for acceleration of domain-specific
functions

Low-level hardware abstraction layer
Open to promote community and industry collaboration

Enables code reuse across architectures and vendors

The productive, smart path to freedom for accelerated
computing from the economic and technical burdens
oneAPI of proprietary programming models

fasads.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. Visit oneapi.com for more details
*Other names and brands may be claimed as the property of others.

Application Workloads Need Diverse Hardware

Middleware & Frameworks

[TensorFlow PyTorch @xnet e ﬁ:i:NurnPy X.. OpenVIN®

. OneAPl Industry Specification

oneAP.

Direct Programming API-Based Programming

Libraries

DPC++

Math Threading [

Data Parallel C++ Analytics/

ML DNN ML Comm

Video Processing

Low-Level Hardware Interface

Other accel.

intel.

7

oneapi.com

Intel” one API Toolkits

A complete set of proven developer tools expanded from CPU to XPU

Intel® oneAPI
Base Toolkit

Native Code Developers

Add-on
Domain-
specific Toolkits

Specialized Workloads

Toolkits

powered by
oneAPI

Data Scientists & Al Developers

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1

oneAPI

BASE TOOLKIT

1

oneAPI

HPC TOOLKIT

Intel® Al
Analytics
Toolkit

oneAPI

A core set of high-performance tools
for building C++, Data Parallel C++
applications & oneAPI library-based
applications

Intel® oneAPI

Intel® oneAPI Intel® oneAPI Rendering

Tools for HPC 1 Tools for loT 1 Toolkit

Deliver fast Fortran, oneAPI Build efficient, reliable oneAPI Create performant,
OpenMP & MPI solutions that run at high-fidelity visualization
applications that IoT TOOLKIT network’s edge nnnnnnnnnn ooLKIT applications

scale

Intel® Distribution of
OpenVINO™ Toolkit

Deploy high performance
inference & applications from
edge to cloud

Intel® Al Analytics
Toolkit

Accelerate machine learning & data
science pipelines with optimized DL

©penVIN®
frameworks & high-performing Toolkit
Python libraries

intel.

®
Intel” oneAP|
] Intel® one API Base Toolkit
B a S e T O O l |< I t Direct Programming API-Based Programming Analysis & debug Tools

Accelerate Data-centric Workloads Intel® oneAP| DPC++/C#+ Intel® oneAPI DPC++ Library

® ™ .
Compiler oneDPL Intel® VTune™ Profiler

A core set of core tools and libraries for S

. . . . o ntel® one ath Kerne .
developing high-performance applications on Intel® DPC++ Compatibility Tool Library - oneMKL Intel® Advisor
Intel® CPUs, GPUs, and FPGAs.

Intel® one API Data Analytics

© it 4 © it o
Who US@S |t’) Intel® Distribution for Python Library - oneDAL Intel® Distribution for GDB
= A broad range of developers across industries :

Intel® FPGA Add-on Intel® oneAPI Threading
= Add-on toolkit users since this is the base for all for oneAPI Base Toolkit Building Blocks -oneTBB

toolkits
. Intel® oneAPI Video Processing
Top Features/Benefits Library-oneVPL
= Data Parallel C++ compiler, library and analysis tools Intel® oneAPI Collective
Communications Library

= DPC++ Compatibility tool helps migrate existing code oneCCL

written in CUDA

L . . Intel® oneAPI Deep Neural
= Python distribution includes accelerated scikit-learn, Network Library - oneDNN 1

NumPy, SciPy libraries

» Optimized performance libraries for threading, math, Intel® Integrated Performance oneAPI
. imiti - ®
data analytics, deep learning, and video/image/signal Pl ives =t (2
processing

BASE TOOLKIT

Optimization Notice . . .
Copyright ©® 2019, Intel Corporation. All rights reserved. Learn More: intel.com/oneAPI-BaseKit "‘\tel0

*Other names and brands may be claimed as the property of others.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html

Intel® oneAPI Data Parallel C++ Library (oneDPL)

* Three components:
1. Standard C++ APIs: Tested and supported within DPC++ kernels
2. Parallel STL: C++17 algorithms extended with DPC++ execution policies
3. STL Extensions: Additional algorithms, classes and iterators
sycl::queue q;

std::vector<int> v(N);
std::sort(oneapi::dpl::execution::make_device policy(q), v.begin(), v.end());

» Recommended for codes using C++17 algorithms, or libraries like Thrust

See https://spec.oneapi.com/versions/latest/elements/oneDPL/source/index.html

Optimization Notice

Copyright © 2019, Intel Corporation. Al rights reserved. intel.

*Other db ands may be ¢ lmd thp prtyofoth

10

Intel” DPC++ Compatibility Tool

Minimizes Code Migration Time

Assists developers migrating code
written in CUDA to DPC++ once,
generating human readable code
wherever possible

~80-90% of code typically migrates
automatically

Inline comments are provided
to help developers finish porting the
application

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel DPC ++ Compatibility Tool Usage Flow

80-90%
Transformed

Developer's CUDA Compatibility
Source Code Tool

Complete Coding &

Tune to Desired
Performance

Human Readable
DPC++ with inline
Comments

DPC++
Source Code

L

intel.

11

Intel” VTune” Profiler

DPC++ Profiling-Tune for CPU, GPU & FPGA

Analyze Data Parallel C++ (DPC++)

See the lines of DPC++ that consume the most time

Tune for Intel CPUs, GPUs & FPGASs

Optimize for any supported hardware accelerator

Optimize Offload

Tune OpenMP offload performance

Wide Range of Performance Profiles
CPU, GPU, FPGA, threading, memory, cache, storage...

Supports Popular Languages

DPC++, C, C++, Fortran, Python, Go, Java, or a mix

There will still be a need to tune for each architecture.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

| Assembly = & 6" b | b D
. % GPU Instructions Executed by Instruction T__ !

Source # Control Flow B Send & Wait

0 Int32 & SP Float @ IntG4 & DP Float @ Other

158 dx = ptr[jl.poes[0] - ptr[i].pos[0] 75,002,500 @O D
159 dy = ptrljl.pos[l] - ptr[i].pos[l] 12,500,000
160 dz = ptr[jl.pes[2] - ptr[i].pos[2] 12,500,000
161 '
162 distanceSgr = dx%dx + dy*dy + dz¥*d 87,500,000 I DD
163 distancelInv = 1.0 / sgrt(distances 12,500,000 @
164
165 | ptrlil.accl0] +=dx * G * ptr(jl.m 162503750
166 ptrlil.acc[l] += dy * ¢ * ptr[il.mnd| 150,000,000 DD
167 ptrlil.acc[2] += dz * ¢ * ptr[j].m{| 150,000,000 (DD D

GPU

GPU Execution
Units Array

163.66 GB/s Total &

System

CPU

Utilization: 24.5%

intel.

Intel” Advisor

Design Assistant - Design for Modern Hardware

Offload Advisor

Estimate performance of offloading to an accelerator

Roofline Analysis
Optimize CPU/GPU code for memory and compute

Vectorization Advisor

Add and optimize vectorization

Threading Advisor

Add effective threading to unthreaded applications

Flow Graph Analyzer

Create and analyze efficient flow graphs

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

hQS «

4714

032 {RAN B2

Physical Cores: 4 ©

(CPU) Host (CPU) Host

Time

x B « |Cores:[1 v| ¥ |V Default FLOAT - | |I* No Results to Compare ~ |

~4

5P Vector Add Peak: 47 66 SFLOPS _. -

Sl P)
5 D T RIAYTETE
)P Vestor’Add Peak-26 97 GFLOPS

FLOP/Byte (Anthmenc Intensity)
T

1
0.023 0.54
App Threads: 1 ¥ Self Elapsed Time: 17.079s Total Time: 17.079 s

There will still be a need to tune for each architecture. |r1te|®

13

SETUP INTEL™ DEVCLOUD AND JUPYTER
ENVIRONMENT

Intel® devcloud for oneAPI HOMTORKS

Storage
Server
Ug
Connect to the
Login Node Tob
Queue

Download Linux*

og Access Key

« A development sandbox to develop, test and run = G o
workloads across a range of Intel CPUs, GPUs, and : .
FPGAs using Intel® oneAPI beta software '

« Afastway to start coding

* Trythe oneAPI toolkits, compilers, performance
libraries, and tools

« Get 120 days of free access to the latest Intel® hardward® W D00
and oneAPI software

(Beta)

Get to Know Intel oneAPI™" Now

No hardware acquisitions, system configurations, or software installations

* No downloads; No hardware acquisition; No installatio

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. intel i35
*Other names and brands may be claimed as the property of others. ¢

Register to Devcloud

= Step 1: Register or Sign into = Step 2: Activate Intel Devcloud
Intel Developer Zone Account

Step 2: Activate Intel® DevCloud for oneAPI

To get free access, tell us a bit more about yourself and how you would like to use the Intel DevCloud.
DevCloud for oneAPI - Enrollment Form

Enrollment Form

DevCloud for oneAPI

4)
Step 1: Sign in or Register
To get an Intel® DevCloud account, you must first create a Basic Intel® Account

. J

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. intel 16
*Other names and brands may be claimed as the property of others. ¢

Get Started with Devcloud

= Step 3: Click on Get Started = Step 4: Scroll Down to the
button bottom of the page and click
Intel® DevCloud for oneAP| on Launch JupyterLab

Overview Get Started Documentation Forum =

e p— Connect with Jupyter* Lab
Explore Intel oneAPI Toolkits in the DevCloud

These toolkits are for performance-driven applications—HPC, loT, advanced rendering, deep lear
toolkit to see what it includes, explore training modules, and go deeper with developer guides.

Connect with Jupyter* Notebook

Use Jupyter Notebook to learn about how oneAPI can solve the challenges
of programming in a heterogeneous world and understand the Data
Parallel C++ (DPC++) language and programming model.

Intel® oneAP| Base Toolkit

1 Build and deploy high-performance, data-centric applications across divers Launch Jupyterlab*
Get Started with your first Sample View Training Modules

The toolkit includes:

oneAPI

BASE TOOLKIT

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. intel 17
*Other names and brands may be claimed as the property of others. ¢

Setup Intel® DevCloud and Jupyter Environment

DPC++ Essentials |nte|~ 18

Launch Jupyter and select Terminal

File Edit View Run

(@)

- + [+}
./

O Name v
m work

o | tmp
Im intel

[m] welcome.ipynb

U « B

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.

Kernel Tabs Settings Help

* C [Launcher X
Last Modified
9 minutes ago E] Notebook

34 minutes ago
2 months ago
22 days ago 'I

Tensorflow 1.15
(Al kit)

A

Python 3.7
(Intel® oneAFI)

A

PyTorch 1.4.0 (Al
kit)

Console

Tensorflow 1.15
(Al Kkit)

)"

Python 3.7
(Intel® oneAPl)

A

PyTorch 1.4.0 (Al
kit)

Other

Terminal

Text File

LU =1

Markdown File Show Contextual
Help

*Other names and brands may be claimed as the property of others.

intel.

19

Commands to input in terminal

Please execute the following commands in the Jupyter Terminal
window

This command copies workshop into the user directory

B u30109@s001-n004: ~ X

u3eledaseel-need:~$ /data/oneapi workshop/get jupyter notebooks.sh

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

intel.

20

Select

- + LS c
B8 / oneAPl_Essentials /

O Name - Last Modified
B 00 Introduction_to Ju... 2 months ago

o B 01 _oneAPl Intro 2 months ago
Bm 02_DPCPP_Program_St... 2 months ago

g* B 03 _DPCPP_Unified_Sha... 2 months ago
B 04 DPCPP_Sub_Groups 2 months ago
BB 05_Intel_Advisor 2 months ago

*" B8 06_Intel VTune Profiler 2 months ago
Bm 07_DPCPP_Library 2 months ago

D M README.md 3 months ago

™| Welcome.ipynb 2 months ago

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

A Welcome.ipynb X
B + X O 0 » = C Markdown v Python 3.7 (Intel® oneAPI)

oneAPI Essentials Modules

The concepts build on top of each other introducing and reinforcing the concepts of Data Parallel C++.

Module 0 - Introduction to Jupyter Notebook (Optional)

Optional This module explains how to use Jupyter Notebook which is used in all of the modules to edit and run coding excecises, this can be
skipped if you are already familiar with using Jupyter Notebooks.

Module 1 - Introduction to oneAPIl and DPC++ 1

These initial hands-on exercises introduce you to DPC++ and the goal of aneAPl. In addition, it familiarizes you with the use of Jupyter notebooks as
a front-end for all training exercises. This workshop is designed to be used on the DevCloud and includes details on how to submit batch jobs on
DevCloud environment.

Module 2 - DPC++ Program Structure

These hands-on exercises present six basic DPC++ programs that illustrate the elements of a DPC+ + application. You can modify the source code in

some of the exercises to become more familiar with DPC++ programming concepts.

intel.

21

DPC++essentials Course

ACOMPLETE DPC++ PROGRAM . ND_RANGE KERNEL EXECUTION

Parallel execution with ND_RANGE Kernel helps to group work items that
constespe §nt numel maps to hardware resources. This helps to tune applications for performance.

waing namespace cl:isycl;

Single source

Host code and heterogeneous

accelerator kernels can be int main() {

mixed in same source files wuto R = range<>{ num };
buffercinty A{ 2);

wark groep of
[AA4) work-ems

Familiar C++ queve(}. submit([8] (handlers &) (

ato out -
Library constructs add A get_access<accens:imode; iwriter(h);
functionality, such as: . - . h.paralleld for(R, [=)(idc> dax) {
» 1 owt{ddx] = dax(e); }): M of 5 2 = |
| Construct | Purpose = ro HEEEOEEAR .
o resvlt = v - |
queue Work targeting A, BOT_sccesscaccess;inoder ireads(); of work-growy l Smension 0
butfer Data for (Ant o) icnum; o+i) o> oAND-rage
T r [4) <<~ ’
e s $T011ceut << reswlt{i] << "\n

parallel_for Parallelism return 8;
)

Work-ltem Subgroup

INTEL OFFLOAD ADVISOR (BETA) {TEL" VIUNE™ P ':m'mmnmiﬁmvsmmmnm HOW IT MAPS TO HARDWARE e somsses

* Helps defining which sections of the code should run on a given accelerator

—— | | o | ——) All work-items ina

= = work-group are
- —————— [T scheduled on one
* Provides performance projection on accelerators (currently gend and gent1) -
~ - Compute Unit,
which has its own
local memory

T O
BEE' [l

i eE

All work-items in a sub-group
are mapped to vector
hardware

)

DPC++ Essentials Course Curriculum provides 20 hours of training
and exercises using Jupyter Notebooks integrated with Intel® DevCloud

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. intel
*Other names and brands may be claimed as the property of others. °

Qsub

* gsub can be used to submit jobs to the DevCloud job queue

» Jobs run asynchronously and report status upon completion

* The traditional way to execute qsub is to pass it a script:
“gsub <script.sh>"

* qsub requires absolute paths, e.g. /bin/ls

e gsub -w $PWD - Runs in current folder

* Output file is <scriptname>.o<jobid>

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. intel 23
*Other names and brands may be claimed as the property of others. ¢

OSTAT/QDEL

» gstat displays running jobs

» gdel <jobid> deletes pending jobs

n424858=2001-n003:~% gstat

Job ID

Time Use 5 {Queue

591829.
291832.
591833.
591834.
291835.

v—gsvr-1
v—gsvr-1
v—gsvr-1
v—gsvr-1
v—gsvr-1

.« b—2ingleuser ud424E5S

STDIN
STDIH
STDIH
STDIN

ud424858=001-n003:~§ gdel 551835

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

ud2485
u424E5
u424E5
ud2485

0D:01:06
0

0
0
0

E Jupvyterhulb
E batch
E batch
E batch
E batch

intel.

24

Interactive shells

* Getting an interactive shell
* qsub -l

* Requesting an iGPU/FPGA node
* qsub -l -l nodes=1:gpu:ppn=2
* clinfo - lists iGPU info

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. intel 25
*Other names and brands may be claimed as the property of others. N

Hands-on Coding on Intel DevCloud

Run Simple DPC++ Program

intel

Data Parallel C++

Standards-based, Cross-architecture Language
DPC++ =|SO C++ and Khronos SYCL

Parallelism, productivity and performance for CPUs and
Accelerators

= Delivers accelerated computing by exposing hardware features

Direct Programming:
Data Parallel C++

= Allows code reuse across hardware targets, while permitting custom tuning for

specific accelerators Community Extensions
= Provides an open, cross-industry solution to single architecture proprietary lock-in
Based on C++and SYCL Anieesoiet

= Delivers C++ productivity benefits, using common, familiar C and C++ constructs

» |ncorporates SYCL from the Khronos Group to support data parallelism and
heterogeneous programming

Community Project to drive language enhancements
* Provides extensions to simplify data parallel programming
= Continues evolution through open and cooperative development

Apply your skills to the next innovation, not rewriting

software for the next hardware platform

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

The open source and Intel DPC++/C++ compiler supports Intel CPUs, GPUs, and FPGAs. u
Codeplay announced a DPC++ compiler that targets Nvidia GPUs. |r‘te|0 27

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

What is Data Parallel C++7

Data Parallel C++
= C++ and SYCL* standard and extensions

Based on modern C++

» C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

» |ncorporates the SYCL standard for data parallelism and heterogeneous
programming

Optimization Notice

-
Copyright © 2019, Intel Corporation. All rights reserved. lntel 28
*Other names and brands may be claimed as the property of others.

DPC++ Extends SYCL* standard

Enhance Productivity

« Simple things should be simple to express
* Reduce verbosity and programmer burden
Enhance Performance

* Give programmers control over program execution

* Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

* Open source implementation with goal of upstream LLVM

» DPC++ extensions aim to become core SYCL*, or Khronos* extensions

Optimization Notice

-
Copyright © 2019, Intel Corporation. All rights reserved. lntel 29
*Other names and brands may be claimed as the property of others.

A Complete DPC++ Program

Single source

#include <CL/sycl.hpp>

Host code and heterogeneous constexpr int N=16;
accelerator kernels can be

: : : using namespace sycl;
mixed in same source files

int main() {
Familiar C++ queue g;

Library constructs add int *data = malloc_shared<int>(N, q);
functionality, such as: g.parallel for(N, [=](auto i) {

data[i] = 1i;

Accelerator
device code ‘

Construct Purpose }).wait();

queue Work targeting for (int i=0; i<N; i++) std::cout << data[i] << "\n";

[l h Dat t
malloc_shared ata managemen free(data, q);

parallel for Parallelism
return 0;

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. |nte|
*Other names and brands may be claimed as the property of others. .

DPC++ Program Structure

* Agenda
* Deciding where code is run

» Data transfers and synchronization

« DPC++ execution model and memory model

e Hands On

« Complex Multiplication

Optimization Notice

-
Copyright © 2019, Intel Corporation. All rights reserved. lntel 31
*Other names and brands may be claimed as the property of others.

Buffer Memory Model

Buffers encapsulate data shared
between host and device.

queue q;
std::vector<int> v(N, 10);
{

buffer buf(v);

Accessors provide access to data
g.submit([&](handler& h) {

stored in buffers and create data
dependences in the graph.

accessor a(buf, h , write only);
h.parallel for(N, [=](auto i) { a[i] = i; });
})s

Unified Shared Memory (USM))

provides an alternative pointer-
based mechanism for managing
memory;

for (int 1 = 0; 1 < N; i++) std::cout << v[i] << " "

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. lntel

*Other names and brands may be claimed as the property of others.

32

Important Classes in DPC++

Class

Functionality

Represents a specific CPU, GPU, FPGA or other
device that can execute SYCL kernels.

Represents a queue to which kernels can be
submitted (enqueued).

Multiple queues may map to the same
sycl::device.

: :buffer

Encapsulates an allocation that the runtime can
transfer between host and device.

: :handler

Used to define a command-group scope that
connects buffers to kernels.

. .dccessor

Used to define the access requirements of specific
kernels (e.g. read, write, read-write).

::range, sycl::nd _range
::id, sycl::item,
::nd_item

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Representations of execution ranges and individual
execution agents in the range.

Accessor Modes

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Access Mode

read_only

write_only

read_write

Description

Read only Access

Write-only access. Previous
contents not discarded

Read and Write access

intel.

34

DPC++ Code Anatomy

void dpcpp code(int* a, int* b, int* c) {
// Setting up a device queue
queue q;
Setup buffers for input and output vectors
buffer buf a(a, range<1>(N));
buffer buf b(b, range<1>(N));
buffer buf c(c, range<1>(N));
//Submit command group function object to the queue
q.submit([&](handler &h){
device accessors to buffers allocated in global memory

accessor A(buf_a, h, read_only);
accessor B(buf_b, h, read_only);
accessor C(buf_c, h, write only);
the device kernel body as a lambda function

h.parallel for(range<1>(N), [=](auto i){

C[i] = A[i] + B[i];
})

Kernel invocations Kernel is invoked Kernel invocation D :
are executed in for each element of has access to the ol
parallel the range invocation id

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Step 1: create a device queue
(developer can specify a device type via
device selector or use default selector)

Step 2: create buffers
(represent both host and
device memory)

Step 3: submita command group for
(asynchronous) execution

Step 4: create accessors
describing how buffer is used on
the device

Step 5: specify kernel function and
launch parameters (e.g. group size)

Step 6: specify code to run on
the device

The results are copied to vector c at buf_c buffer destruction

intel.

35

Submitting to a Device

 Adevice represents a specific accelerator in the system.
 Work is not submitted to devices directly, but to a queue associated with the device.

« C(Creating a queue for a specific device requires a device selector.

default _selector selector;
// host_selector selector;
// cpu_selector selector;
// gpu_selector selector;

queue q(selector);

std::cout << "Device: " << qg.get _device().get_info<info::device::name>() << std::endl;

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. lntel 36
*Other names and brands may be claimed as the property of others. :

Parallel Kernels

» Parallel Kernel allows multiple instances of an operation to execute in parallel.

« Useful to offload parallel execution of a basic for-loop in which each iteration is
completely independent and in any order.

« Parallel kernels are expressed using the parallel for function

for-loop in CPU application Offload to accelerator using parallel_for

for(int i=0; i < 1024; i++){
a[i] = b[i] + c[i];) A[i] = B[i] + C[i];
})s

h.parallel for(range<1>(1024), [=](id<1> i){

});

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. lntel 37
*Other names and brands may be claimed as the property of others. :

Basic Parallel Kernels

The functionality of basic parallel kernels is exposed via range, id

and item classes

* range class is used to describe the
iteration space of parallel execution

* Id class is used to index an individual
instance of a kernel in a parallel
execution

* item class represents an individual
instance of a kernel function, exposes
additional functions to query
properties of the execution range

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

paratiel_for(angect (1020, (]3> 109

// CODE THAT RUNS ON DEVICE
})s

h.parallel for(range<1>(1024), [=] ({

auto idx = item.get id();

auto R = item.get range();

// CODE THAT RUNS ON DEVICE

intel.

38

ND-Range Kernels

Basic Parallel Kernels are easy way to parallelize a for-loop but does not allow
performance optimization at hardware level.

ND-Range kernel is another way to expresses parallelism which enable low level
performance tuning by providing access to local memory and mapping
executions to compute units on hardware.

work-group of
(4,4,4) work-items "

* The entire iteration space is divided into smaller
groups called work-groups, work-items within a work-
group are scheduled on a single compute unit on dimension 1
hardware. of ND-range

* The grouping of kernel executions into work-groups
will allow control of resource usage and load balance dimension 2
work distribution. rbrange

ND-Range

Optimization Notice

L]
Copyright © 2019, Intel Corporation. All rights reserved. lntel
*Other names and brands may be claimed as the property of others. :

39

ND-Range Kernels

The functionality of nd_range kernels is exposed via nd _range and nd_item
classes

h.par'allel_For'(r'ange<1>(1024 ,range<1>(64)), [=](nd_item<1> item){

auto idx = item.get global id();
auto local id = item.get local id();

// CODE THAT RUNS ON DEVICE

1) global size work-group size

« nd range class represents a grouped execution range using global execution range and the
local execution range of each work-group.

« nd_item class represents an individual instance of a kernel function and allows to query for
work-group range and index.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. lntel

*Other names and brands may be claimed as the property of others.

40

Asynchronous Execution

Host Graph

#include <CL/sycl.hpp>
constexpr int N=16;
Host code using namespace sycl;
execution int main() {
std::vector<int> data(N);

Graph executes
asynchronously
to host program

{
buffer A(data);
queue q;
g.submit([&](handler& h) {
Enqueues ii\\/;7 accessor out(A, h, write only); "A
kernel to h.parallel for(N, [=](auto 1) {
graph, and out[i] = 1i; } Kernel

keeps going

¢A

for (int i=0; i<N; ++i) std::cout << data[i];

N

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. lntel 41
*Other names and brands may be claimed as the property of others. :

Asynchronous Execution

int main() {
auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue q;

[a.submit) [&](handler& h) {

accessor out(A, h, write only);
h.parallel for(R, [=](id<1> i) {
out[i] = i; }); });

g.submitf [&] (handler& h) {
accessor out(A, h, write_only);
h.parallel for(R, [=](id<1> i) {

out[i] = 15 1) 1)
[&](handler‘& h) {

accessor out(B, h, write only);
h.parallel for(R, [=](id<1> i) {
out[i] = 1i; }); });

[&](handler& h) {

accessor in(A, h, read only);

accessor inout(B, h);

h.parallel for(R, [=](id<1> i) {
inout[i] *= in[i]; }); });

Optimization b
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data and control dependences
are resolved by the runtime

“A

B
Kernel 1 ‘

l A Kernel 3
Kernel 2

B
\A
;=dma
dependence
Kernel 4

¥

Program
completion

intel.

42

Synchronization — Host Accessors

Buffer takes ownership of the
#include <CL/sycl.hpp>

using namespace sycl; data stored in vector.

constexpr int N = 16;

int main() {
std::vector<double> v(N, 10);

queue q; Creating host accessor is a

- -
Lounie o (o) SR blocking call and will only return

accessor a(buf, h)

h.parallel for(N, [=](auto i) { after all enqueued kernels that
al[i] -= 2;

})].f); modify the same buffer in any

queue completes execution and

for (int 1 = 0; 1 < N; i++) _ :
std::cout << b[i] << "\n"; the data is available to the host

return 0;

} via this host accessor.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. lntel

*Other names and brands may be claimed as the property of others.

43

Synchronization — Buffer Destruction

#include <CL/sycl.hpp> Buffer creation happens within a

using namespace sycl;
constexpr int N=16; separate function scope.
void dpcpp_code(std::vector<double> &v, queue &q){
buffer buf(v);
q.submit([&](handler& h) {
accessor a(buf, h);
h.parallel for(N, [=](auto i) {
i -= 2; .
})‘;f‘[l] When execution advances

})s : :
} beyond this function scope,

int main() { buffer destructor is invoked
std::vector<double> v(N, 10);

gueue ¢

which relinquishes the ownership
5 1 < N; i++)

std::cout << v[i] << "\n"; of data and copies back the data

return 9;

} to the host memory.

Optimization Notice

L]
Copyright © 2019, Intel Corporation. All rights reserved. lntel
*Other names and brands may be claimed as the property of others. :

Custom Device Selector

The following code shows derived device selector that employs a device selector
heuristic. The selected device prioritizes a GPU device because the integer rating
returned is higher than for CPU or other accelerator.

#include <CL/sycl.hpp>
using namespace cl::sycl;
class my device selector : public device_selector {
public:
int operator()(const device& dev) const override {
int rating = 0;
if (dev.is_gpu() & (dev.get_info<info::device::name>().find("Intel") != std::string::npos))
rating = 3;
else if (dev.is_gpu()) rating = 2;
else if (dev.is_cpu()) rating = 1;
return rating;
}s
}s
int main() {
my_device_selector selector;
queue q(selector);
std::cout << "Device: “ << q.get_device().get_info<info::device::name>() << std::endl;
return 9;

Optimization Notice

-
Copyright © 2019, Intel Corporation. All rights reserved. lntel 45
*Other names and brands may be claimed as the property of others. :

Hands-On: Complex Number Multiplication

* |n this lab we provide with the source code that computes
multiplication of two complex numbers where Complex class is the
definition of a custom type that represents complex numbers

* [n this example the student will learn how to create a custom device
selector and to target GPU or CPU of a specific vendor. The student
will also learn how to pass in a vector of custom Complex class
objects in parallel and needs to modify the source code to setup a
write accessor and call the Complex class member function as
kernel to compute the multiplication

Optimization Notice -
intel

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

46

Hands-on Coding on Intel DevCloud

Complex Multiplication with DPC++

intel #

Recap

* oneAPIl solves the challenges of programming in a heterogeneous world

Take advantage of oneAPI solutions to enable your workflows

Use the Intel” DevCloud to test-drive oneAPI tools and libraries

Introduced to DPC++ language and programming model

Important Classes for DPC++ application

Device selection and offloading kernel workloads

DPC++ Buffers, Accessors, Command Group handler, lambda code as kernel

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. intel
*Other names and brands may be claimed as the property of others. N

43

NOTICES &

= This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

= The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

= Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

= INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

= Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and
other countries.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. intel
*Other names and brands may be claimed as the property of others. °

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

