
oneAPI VIRTUAL WORKSHOP

Praveen Kundurthy

Data Parallel C++ Essentials

What is oneAPI and Data Parallel C++?

2Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Introduction to oneAPI
• Agenda

a) Introduction & Overview to oneAPI

b) Introduction to the Intel® DevCloud

c) Introduction to Jupyter notebooks used for training

d) Introduction to Data Parallel C++

e) DPC++ Program Structure

• Hands On
• Introduction to DPC++ - Simple

• Complex multiplication

3Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Learning Objectives
Explain how oneAPI can solve the challenges of programming in a
heterogeneous world

Use oneAPI solutions to enable your workflows

Experiment with oneAPI tools and libraries on the Intel® DevCloud

Understand the Data Parallel C++ (DPC++) language and
programming model

Use device selection to offload kernel workloads

Build a sample DPC++ application through hands-on lab exercises

All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

One Intel Software & Architecture group
Intel Architecture, Graphics & Software
November 2020

oneAPI:
Industry Initiative & Intel Products

5Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Growth in specialized workloads

Variety of data-centric hardware required

Separate programming models and toolchains for each
architecture are required today

Software development complexity limits freedom of
architectural choice

Programming Challenges

CPU
programming

model

GPU
programming

model

FPGA
programming

model

Other accel.
programming

models

6Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cross-architecture programming that delivers freedom
to choose the best hardware

Based on industry standards and open specifications

Exposes cutting-edge performance features of latest
hardware

Compatible with existing high-performance languages
and programming models including C++, OpenMP,
Fortran, and MPI

oneAPI

7Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

oneAPI Industry Initiative

A cross-architecture language based on C++ and SYCL standards

Powerful libraries designed for acceleration of domain-specific
functions

Low-level hardware abstraction layer

Open to promote community and industry collaboration

Enables code reuse across architectures and vendors

oneAPI Industry Specification

The productive, smart path to freedom for accelerated
computing from the economic and technical burdens
of proprietary programming models

Visit oneapi.com for more details

...

oneapi.com

8Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Toolkit

A core set of high-performance tools
for building C++, Data Parallel C++
applications & oneAPI library-based
applications

Intel® oneAPI
Rendering
Toolkit

Create performant,
high-fidelity visualization
applications

Intel® oneAPI
Tools for HPC

Deliver fast Fortran,
OpenMP & MPI
applications that
scale

Intel® oneAPI
Tools for IoT

Build efficient, reliable
solutions that run at
network’s edge

Intel® AI Analytics
Toolkit

Accelerate machine learning & data
science pipelines with optimized DL
frameworks & high-performing
Python libraries

Intel® Distribution of
OpenVINO™Toolkit

Deploy high performance
inference & applications from
edge to cloud

9Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

™

A core set of core tools and libraries for

developing high-performance applications on

Intel® CPUs, GPUs, and FPGAs.

▪ A broad range of developers across industries

▪ Add-on toolkit users since this is the base for all
toolkits

▪ Data Parallel C++ compiler, library and analysis tools

▪ DPC++ Compatibility tool helps migrate existing code
written in CUDA

▪ Python distribution includes accelerated scikit-learn,
NumPy, SciPy libraries

▪ Optimized performance libraries for threading, math,
data analytics, deep learning, and video/image/signal
processing

Intel® oneAPI
Base Toolkit

Learn More: intel.com/oneAPI-BaseKit

https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html

10Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® oneAPI Data Parallel C++ Library (oneDPL)

▪ Three components:

1. Standard C++ APIs: Tested and supported within DPC++ kernels

2. Parallel STL: C++17 algorithms extended with DPC++ execution policies

3. STL Extensions: Additional algorithms, classes and iterators

▪ Recommended for codes using C++17 algorithms, or libraries like Thrust

sycl::queue q;
std::vector<int> v(N);
std::sort(oneapi::dpl::execution::make_device_policy(q), v.begin(), v.end());

See https://spec.oneapi.com/versions/latest/elements/oneDPL/source/index.html

11Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® DPC++ Compatibility Tool

Assists developers migrating code
written in CUDA to DPC++ once,
generating human readable code
wherever possible

~80-90% of code typically migrates
automatically

Inline comments are provided
to help developers finish porting the
application

12Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

See the lines of DPC++ that consume the most time

Optimize for any supported hardware accelerator

Tune OpenMP offload performance

CPU, GPU, FPGA, threading, memory, cache, storage…

DPC++, C, C++, Fortran, Python, Go, Java, or a mix

There will still be a need to tune for each architecture.

Intel® VTune™ Profiler

13Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Estimate performance of offloading to an accelerator

Optimize CPU/GPU code for memory and compute

Add and optimize vectorization

Add effective threading to unthreaded applications

Create and analyze efficient flow graphs

Intel® Advisor

There will still be a need to tune for each architecture.

Setup Intel® DevCloud and Jupyter
Environment

15Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® devcloud for oneAPI
access

15

• A development sandbox to develop, test and run
workloads across a range of Intel CPUs, GPUs, and
FPGAs using Intel® oneAPI beta software

• A fast way to start coding

• Try the oneAPI toolkits, compilers, performance
libraries, and tools

• Get 120 days of free access to the latest Intel® hardware
and oneAPI software

• No downloads; No hardware acquisition; No installation

16Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Register to Devcloud

▪ Step 1: Register or Sign into
Intel Developer Zone

▪ Step 2: Activate Intel Devcloud
Account

17Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Get Started with Devcloud

▪ Step 3: Click on Get Started
button

▪ Step 4: Scroll Down to the
bottom of the page and click
on Launch JupyterLab

18DPC++ Essentials

Setup Intel® DevCloud and Jupyter Environment

19Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Launch Jupyter and select Terminal

19

20Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Commands to input in terminal

Please execute the following commands in the Jupyter Terminal
window

/data/oneapi_workshop/get_jupyter_notebooks.sh
This command copies workshop into the user directory

20

21Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Select Welcome.ipynb

21

22Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DPC++essentials Course

22

DPC++ Essentials Course Curriculum provides 20 hours of training
and exercises using Jupyter Notebooks integrated with Intel® DevCloud

23Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Qsub

• qsub can be used to submit jobs to the DevCloud job queue

• Jobs run asynchronously and report status upon completion

• The traditional way to execute qsub is to pass it a script:

“qsub <script.sh>”

• qsub requires absolute paths, e.g. /bin/ls

• qsub –w $PWD – Runs in current folder

• Output file is <scriptname>.o<jobid>

24Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Qstat/qdel

• qstat displays running jobs

• qdel <jobid> deletes pending jobs

25Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Interactive shells

• Getting an interactive shell

• qsub –I

• Requesting an iGPU/FPGA node

• qsub -I -l nodes=1:gpu:ppn=2

• clinfo – lists iGPU info

26DPC++ Essentials

Hands-on Coding on Intel DevCloud

Run Simple DPC++ Program

27Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ Delivers accelerated computing by exposing hardware features

▪ Allows code reuse across hardware targets, while permitting custom tuning for
specific accelerators

▪ Provides an open, cross-industry solution to single architecture proprietary lock-in

▪ Delivers C++ productivity benefits, using common, familiar C and C++ constructs

▪ Incorporates SYCL from the Khronos Group to support data parallelism and
heterogeneous programming

▪ Provides extensions to simplify data parallel programming

▪ Continues evolution through open and cooperative development

Data Parallel C++

The open source and Intel DPC++/C++ compiler supports Intel CPUs, GPUs, and FPGAs.
Codeplay announced a DPC++ compiler that targets Nvidia GPUs.

Apply your skills to the next innovation, not rewriting
software for the next hardware platform

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

28Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

What is Data Parallel C++?

Data Parallel C++

= C++ and SYCL* standard and extensions

Based on modern C++

▪ C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

▪ Incorporates the SYCL standard for data parallelism and heterogeneous
programming

29Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

DPC++ Extends SYCL* standard

Enhance Productivity

• Simple things should be simple to express

• Reduce verbosity and programmer burden

Enhance Performance

• Give programmers control over program execution

• Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

• Open source implementation with goal of upstream LLVM

• DPC++ extensions aim to become core SYCL*, or Khronos* extensions

30Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

A Complete DPC++ Program

Single source

• Host code and heterogeneous
accelerator kernels can be
mixed in same source files

Familiar C++

• Library constructs add
functionality, such as:

#include <CL/sycl.hpp>

constexpr int N=16;

using namespace sycl;

int main() {

queue q;

int *data = malloc_shared<int>(N, q);

q.parallel_for(N, [=](auto i) {

data[i] = i;

}).wait();

for (int i=0; i<N; i++) std::cout << data[i] << "\n";

free(data, q);

return 0;

}

Host
code

Accelerator
device code

Host
code

Construct Purpose

queue Work targeting

malloc_shared Data management

parallel_for Parallelism

31Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

DPC++ Program Structure

• Agenda
• Deciding where code is run

• Data transfers and synchronization

• DPC++ execution model and memory model

• Hands On
• Complex Multiplication

32Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Buffer Memory Model

Buffers encapsulate data shared
between host and device.

Accessors provide access to data
stored in buffers and create data
dependences in the graph.

Unified Shared Memory (USM)
provides an alternative pointer-
based mechanism for managing
memory;

queue q;

std::vector<int> v(N, 10);

{

buffer buf(v);

q.submit([&](handler& h) {

accessor a(buf, h , write_only);

h.parallel_for(N, [=](auto i) { a[i] = i; });

});

}

for (int i = 0; i < N; i++) std::cout << v[i] << " ";

33Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Important Classes in DPC++
Class Functionality

sycl::device
Represents a specific CPU, GPU, FPGA or other
device that can execute SYCL kernels.

sycl::queue

Represents a queue to which kernels can be
submitted (enqueued).

Multiple queues may map to the same
sycl::device.

sycl::buffer
Encapsulates an allocation that the runtime can
transfer between host and device.

sycl::handler
Used to define a command-group scope that
connects buffers to kernels.

sycl::accessor
Used to define the access requirements of specific
kernels (e.g. read, write, read-write).

sycl::range, sycl::nd_range
sycl::id, sycl::item,
sycl::nd_item

Representations of execution ranges and individual
execution agents in the range.

34Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Accessor Modes

Access Mode Description

read_only Read only Access

write_only
Write-only access. Previous
contents not discarded

read_write Read and Write access

35Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

DPC++ Code Anatomy

Done!
The results are copied to vector c at buf_c buffer destruction

Step 1: create a device queue
(developer can specify a device type via
device selector or use default selector)

Step 2: create buffers
(represent both host and
device memory)

Step 3: submit a command group for
(asynchronous) execution

Step 4: create accessors
describing how buffer is used on
the device

Step 5: specify kernel function and
launch parameters (e.g. group size)

Step 6: specify code to run on
the device

Kernel invocations
are executed in
parallel

Kernel is invoked
for each element of
the range

Kernel invocation
has access to the
invocation id

void dpcpp_code(int* a, int* b, int* c) {
// Setting up a device queue
queue q;
// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));
//Submit command group function object to the queue
q.submit([&](handler &h){

//Create device accessors to buffers allocated in global memory
accessor A(buf_a, h, read_only);
accessor B(buf_b, h, read_only);
accessor C(buf_c, h, write_only);
//Specify the device kernel body as a lambda function
h.parallel_for(range<1>(N), [=](auto i){

C[i] = A[i] + B[i];
});

});
}

36Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Submitting to a Device

• A device represents a specific accelerator in the system.

• Work is not submitted to devices directly, but to a queue associated with the device.

• Creating a queue for a specific device requires a device_selector.

default_selector selector;

// host_selector selector;

// cpu_selector selector;

// gpu_selector selector;

queue q(selector);

std::cout << "Device: " << q.get_device().get_info<info::device::name>() << std::endl;

37Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Parallel Kernels

• Parallel Kernel allows multiple instances of an operation to execute in parallel.

• Useful to offload parallel execution of a basic for-loop in which each iteration is
completely independent and in any order.

• Parallel kernels are expressed using the parallel_for function

h.parallel_for(range<1>(1024), [=](id<1> i){

A[i] = B[i] + C[i];

});

for(int i=0; i < 1024; i++){

a[i] = b[i] + c[i];

});

for-loop in CPU application Offload to accelerator using parallel_for

38Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Basic Parallel Kernels

The functionality of basic parallel kernels is exposed via range, id
and item classes

h.parallel_for(range<1>(1024), [=](id<1> idx){

// CODE THAT RUNS ON DEVICE

});

h.parallel_for(range<1>(1024), [=](item<1> item){

auto idx = item.get_id();

auto R = item.get_range();

// CODE THAT RUNS ON DEVICE

});

• range class is used to describe the
iteration space of parallel execution

• id class is used to index an individual
instance of a kernel in a parallel
execution

• item class represents an individual
instance of a kernel function, exposes
additional functions to query
properties of the execution range

39Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

ND-Range Kernels

Basic Parallel Kernels are easy way to parallelize a for-loop but does not allow
performance optimization at hardware level.

ND-Range kernel is another way to expresses parallelism which enable low level
performance tuning by providing access to local memory and mapping
executions to compute units on hardware.

• The entire iteration space is divided into smaller
groups called work-groups, work-items within a work-
group are scheduled on a single compute unit on
hardware.

• The grouping of kernel executions into work-groups
will allow control of resource usage and load balance
work distribution.

40Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

ND-Range Kernels

The functionality of nd_range kernels is exposed via nd_range and nd_item
classes

• nd_range class represents a grouped execution range using global execution range and the
local execution range of each work-group.

• nd_item class represents an individual instance of a kernel function and allows to query for
work-group range and index.

h.parallel_for(nd_range<1>(range<1>(1024),range<1>(64)), [=](nd_item<1> item){

auto idx = item.get_global_id();

auto local_id = item.get_local_id();

// CODE THAT RUNS ON DEVICE

}); global size work-group size

41Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Asynchronous Execution

#include <CL/sycl.hpp>
constexpr int N=16;
using namespace sycl;
int main() {
std::vector<int> data(N);
{
buffer A(data);
queue q;
q.submit([&](handler& h) {
accessor out(A, h, write_only);
h.parallel_for(N, [=](auto i) {
out[i] = i;

});
});

}
for (int i=0; i<N; ++i) std::cout << data[i];

}

Host code
execution

Enqueues
kernel to
graph, and
keeps going

Kernel

A

A

Graph executes
asynchronously
to host program

Host Graph

42Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Asynchronous Execution

Program
completion

A

A

B

A

B

int main() {
auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue q;

q.submit([&](handler& h) {
accessor out(A, h, write_only);
h.parallel_for(R, [=](id<1> i) {

out[i] = i; }); });

q.submit([&](handler& h) {
accessor out(A, h, write_only);
h.parallel_for(R, [=](id<1> i) {

out[i] = i; }); });

q.submit([&](handler& h) {
accessor out(B, h, write_only);
h.parallel_for(R, [=](id<1> i) {

out[i] = i; }); });

q.submit([&](handler& h) {
accessor in(A, h, read_only);
accessor inout(B, h);
h.parallel_for(R, [=](id<1> i) {

inout[i] *= in[i]; }); });
}

Kernel 1

Kernel 3

Kernel 2

Kernel 4

= data
dependence

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Data and control dependences
are resolved by the runtime

43Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Synchronization – Host Accessors

#include <CL/sycl.hpp>
using namespace sycl;
constexpr int N = 16;

int main() {
std::vector<double> v(N, 10);
queue q;

buffer buf(v);
q.submit([&](handler& h) {

accessor a(buf, h)
h.parallel_for(N, [=](auto i) {

a[i] -= 2;
});

});

host_accessor b(buf, read_only);
for (int i = 0; i < N; i++)

std::cout << b[i] << "\n";
return 0;

}

Buffer takes ownership of the

data stored in vector.

Creating host accessor is a

blocking call and will only return

after all enqueued kernels that

modify the same buffer in any

queue completes execution and

the data is available to the host

via this host accessor.

44Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Synchronization – Buffer Destruction

#include <CL/sycl.hpp>
using namespace sycl;
constexpr int N=16;

void dpcpp_code(std::vector<double> &v, queue &q){
buffer buf(v);
q.submit([&](handler& h) {

accessor a(buf, h);
h.parallel_for(N, [=](auto i) {

a[i] -= 2;
});

});
}

int main() {
std::vector<double> v(N, 10);
queue q;
dpcpp_code(v,q);
for (int i = 0; i < N; i++)

std::cout << v[i] << "\n";
return 0;

}

Buffer creation happens within a

separate function scope.

When execution advances

beyond this function scope,

buffer destructor is invoked

which relinquishes the ownership

of data and copies back the data

to the host memory.

45Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Custom Device Selector

The following code shows derived device_selector that employs a device selector
heuristic. The selected device prioritizes a GPU device because the integer rating
returned is higher than for CPU or other accelerator.

#include <CL/sycl.hpp>
using namespace cl::sycl;
class my_device_selector : public device_selector {
public:

int operator()(const device& dev) const override {
int rating = 0;
if (dev.is_gpu() & (dev.get_info<info::device::name>().find("Intel") != std::string::npos))

rating = 3;
else if (dev.is_gpu()) rating = 2;
else if (dev.is_cpu()) rating = 1;
return rating;

};
};
int main() {

my_device_selector selector;
queue q(selector);
std::cout << "Device: “ << q.get_device().get_info<info::device::name>() << std::endl;
return 0;

}

46Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Hands-On: Complex Number Multiplication

• In this lab we provide with the source code that computes
multiplication of two complex numbers where Complex class is the
definition of a custom type that represents complex numbers

• In this example the student will learn how to create a custom device
selector and to target GPU or CPU of a specific vendor. The student
will also learn how to pass in a vector of custom Complex class
objects in parallel and needs to modify the source code to setup a
write accessor and call the Complex class member function as
kernel to compute the multiplication

47DPC++ Essentials

Hands-on Coding on Intel DevCloud

Complex Multiplication with DPC++

48Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Recap
• oneAPI solves the challenges of programming in a heterogeneous world

• Take advantage of oneAPI solutions to enable your workflows

• Use the Intel® DevCloud to test-drive oneAPI tools and libraries

• Introduced to DPC++ language and programming model

• Important Classes for DPC++ application

• Device selection and offloading kernel workloads

• DPC++ Buffers, Accessors, Command Group handler, lambda code as kernel

48

49Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
▪ This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your

Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

▪ The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and
other countries.

49

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

50

